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ABSTRACT: It remains a challenge to provide accurate and timely flood warnings in many parts of the western United

States. As part of the AdvancedQuantitative Precipitation Information (AQPI) project, this study explores the potential of

using the AQPI gap-filling radar network for streamflow simulation of selected storm events in the San Francisco Bay Area

under a WRF-Hydro modeling system. Two types of watersheds including natural and human-affected among the most

flood-prone region of the Bay Area are investigated. Based on the high-resolution AQPI X-band radar rainfall estimates,

three basic routing configurations, including Grid, Reach, and National Water Model (NWM), are used to quantify the

impact of differentmodel physics options on the simulated streamflow. It is found that theNWMperforms better in terms of

reproducing streamflow volumes and hydrograph shapes than the other routing configurations when reservoirs exist in the

watershed. Additionally, the AQPI X-band radar rainfall estimates (without gauge correction) provide reasonable

streamflow simulations, and they show better performance in reproducing the hydrograph peaks compared with the gauge-

corrected rainfall estimates based on the operational S-band Next Generation Weather Radar network. Also, a sensitivity

test reveals that surficial conditions have a significant influence on the streamflow simulation during the storm: the discharge

increases to a higher level as the infiltration factor (REFKDT) decreases, and its peak goes down and lags as surface

roughness coefficient (Mann) increases. The time delay analysis of precipitation input on the streamflow at the two outfalls

of the surveyed watersheds further demonstrates the link between AQPI gap-filling radar observations and streamflow

changes in this urban region.
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1. Introduction

It is still a challenge to provide accurate and timely flood

warning in many parts of the western United States, partially

due to the difficulty of having accurate estimates of heavy

precipitation and associated timely reliable streamflow pre-

dictions (Chen et al. 2020; White et al. 2019; Ralph et al. 2016).

To improve monitoring and forecasting of precipitation,

streamflow, and coastal flooding in the western United

States, especially the San Francisco Bay Area (hereafter

referred to Bay Area) of Northern California, the Advanced

Quantitative Precipitation Information (AQPI) project is

being implemented. The backbone of AQPI is a gap-filling

radar network consisting of four X-band radar units and

a coastal C-band radar to augment the existing Next

Generation Weather Radar (NEXRAD) network, which

provides accurate, short-term near surface radar quantita-

tive precipitation estimation (QPE) in the Bay Area.

The radar observation of rainfall and its use in the field of

hydrology is an area of ongoing research (e.g., Krajewski and

Smith 2002; Seo et al. 2015; Ma and Chandrasekar 2020). It is

known that weather radar has an advantage of providing

high-resolution observations of precipitation (Bringi and

Chandrasekar 2001). Additionally, radar supplies an important

source of information for data assimilation in numerical

weather prediction models (Gustafsson et al. 2018), which is

required for the forecasters to inform stormwarning system for

flash flood protection. However, radar data have not been

widely used in hydrology partially because the accuracy of

radar QPE is possibly affected by retrieval errors. In addition,

they have different error structures compared with gauge ob-

servations and might incorporate associated uncertainties into

the hydrological model parameters through calibration (Berne

and Krajewski 2013). It is noted that traditional networks of

rain gauges often fail to resolve heavy rains and resulting flash

flooding at the required spatial and temporal scales but the

strength of weather radar information to address this concern is

promising (Seo et al. 2015). With the advantage of lower cost,

lower power, and easier manipulation, the polarimetric

X-band radar system is gaining more interest in urban weather

disaster detection (Chandrasekar et al. 2018), and initial as-

sessment showed that the AQPI gap-filling X-band radar has

better performance than the S-band NEXRAD in terms of

producing higher-quality, higher-resolution QPE in the Bay

Area (Cifelli et al. 2018). However, to date it remains unknownCorresponding author: Y. Ma, yingzhao.ma@colostate.edu
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about the potential of using the AQPI gap-filling radar net-

work for hydrological forecasting in this urban environment.

The WRF-Hydro modeling framework, which couples the

Weather Research and Forecasting (WRF) Model with a hy-

drological model, offers significant potential for combining

hydrological and atmospheric processes in a physically con-

sistent manner (Gochis et al. 2018). Currently, the skill of

WRF-Hydro has been tested in various regions all over the

world (e.g., Senatore et al. 2015; Yucel et al. 2015; Arnault et al.

2016, 2018, 2019; Naabil et al. 2017; Wehbe et al. 2019; Zhang

et al. 2020; Chao et al. 2020; Viterbo et al. 2020). For example,

Yucel et al. (2015) evaluated the ability ofWRF-Hydro in flood

prediction with the WRF-derived precipitation before and af-

ter data assimilation. Naabil et al. (2017) explored the potential

of WRF-Hydro on water resources planning in the Tono Dam

of West Africa. Wehbe et al. (2019) addressed the potential of

WRF-Hydro in the short-term hydrological and meteorologi-

cal predictions in an extreme weather event in an arid region of

the United Arab Emirates. Furthermore, Lin et al. (2018)

implemented a vector-based river network into the WRF-

Hydro to enhance the flood discharge simulation in a hurricane

storm event. Arnault et al. (2019) developed a joint soil–

vegetation–atmospheric water tagging procedure with WRF-

Hydro to assess the contribution of lateral terrestrial water

flow on regionally hydrological cycle. Coupled with the height

above nearest drainage (HAND) technique, the National

Water Model (NWM) system with its core component as

WRF-Hydro offers an operational framework for real-time

and forecast flood guidance across the contiguous United

States (Johnson et al. 2019). As noted above, the WRF-Hydro

system has been implemented for a wide range of research and

operational prediction problems over the world. However,

questions remain regarding catchment response to variability

in precipitation intensity and how various hydrologic pro-

cesses occur under different combinations of land surface–

atmosphere conditions remains an active area of research.

Also, there are three routing configurations included in the

WRF-Hydro system, i.e., Grid, Reach, and NWM, where dif-

ferent configurations can affect the accuracy of model solution

and associated streamflow and flood prediction (Gochis et al.

2018). However, there are few studies to address the skill dif-

ferences of three routing configurations in hydrologicmodeling

(e.g., Yucel et al. 2015; Naabil et al. 2017; Arnault et al. 2018;

Wehbe et al. 2019; Zhang et al. 2020).

The present study aims to quantify the potential of using the

AQPI gap-filling X-band radar network for streamflow simu-

lation under the WRF-Hydro modeling framework in the Bay

Area, where urban flooding is frequent and results in large

impacts to the local economy (Johnson et al. 2020). More

specifically, two different watersheds (i.e., natural and human-

affected) are selected to address how different catchments

respond to various intensity of rainfall in the streamflow sim-

ulations. In addition, three routing configurations are inter-

compared in the two watersheds to clarify their ability in

hydrological modeling. Sensitivity analysis with various surfi-

cial conditions is also conducted. Meanwhile, the linkage be-

tween heavy rainfalls to changes in streamflow is analyzed

based on the time delay analysis.

The remainder of this paper is organized as follows: section 2

presents details of WRF-Hydro, including general model de-

scription, and three basic routing schemes. Section 3 demon-

strates the model experiment for two rainstorm events in the

Bay Area. Study area and the WRF-Hydro configurations are

also included. Results and discussions are presented in

section 4. The main findings are concluded in section 5.

2. The WRF-Hydro modeling framework

a. Model description

TheWRF-Hydro modeling system is developed to integrate

atmospheric and hydrologic procedures as well as other Earth

system processes in a physically consistent manner (Gochis

et al. 2018). The version used in this study is 5.0.3, which in-

cludes numerous options for terrestrially hydrological routing

physics with respect to surface, subsurface, baseflow and

channel water movement as well as a lake/reservoir routing

scheme. Also, a switch activated module is designed to activate

or close the desired modules.

The WRF-Hydro is capable of simulating water and energy

fluxes at high spatial and temporal resolutions using a variety of

physical and conceptual approaches. Thus, a land surface

model (LSM) in both offline and fully coupled modes is de-

veloped, where two selections are available, i.e., Noah and

Noah-MP (Ek et al. 2003; Niu et al. 2011). The Noah-MP is the

updated version of Noah, which has multiple options for LSM

parameterizations and simulations. The operation of LSM re-

quires several meteorological forcing variables, including sur-

face precipitation rate, incoming shortwave and longwave

radiations, air temperature, specific humidity, surface air

pressure, and wind speeds in both horizontal and vertical di-

rections. Using these forcing inputs, the LSM simulates runoff

production (e.g., soil infiltration, surface and subsurface over-

flow, and channel inflow), soil moisture and temperature,

canopy energy exchange, and soil moisture versus groundwater

interaction, etc. (Niu et al. 2011). In addition, the geographic

information system (GIS) tool is implemented with a high-

resolution digital elevation model (DEM) to delineate the

watersheds and outfalls, stream channel network, lakes/reservoirs,

as well as groundwater catchments so as to predict the water

fluxes in the domain of interest.

Briefly, the WRF-Hydro is organized in a modularized,

FORTRAN 90 style and enables execution on high-performance,

parallel computing devices. The operational process begins

with initialization of static land surface forcing data, followed

by the execution of the gridded LSM, and then activates into

terrain routing processes, such as the subsurface, surface,

conceptual base flow, and channel and lake/reservoir routings,

and finally exports model output and restart files. The

disaggregation/aggregation module is also activated for

land surface states and fluxes between low-resolution LSM

grids and high-resolution terrain routing grids. For more

details of WRF-Hydro, the readers are referred to Gochis

et al. (2018).

In the WRF-Hydro, there are three basic routing configu-

rations: a gridded routing using diffusive wave method (i.e.,

Grid), a reach-based routing using the Muskingum–Cunge

1870 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/20/22 05:51 PM UTC



(MC) method (i.e., Reach) and the compound National Water

Model (i.e., NWM).

b. Grid

In the grid-based routing configuration, a diffusive wave

formulation with one-dimensional (1D), variable time-

stepping is applied in the pixel-by-pixel grid channel net-

work. It is based on the general St. Venant equation for shallow

water flow movement (Garcia and Kahawita 1986). Given

deeper flow in the channel, a dynamic propagation with

variable time-stepping can resolve highly variable flood waves.

Usage of variable time-stepping may induce potential com-

putation problems, and it is thus recommended to set up an

appropriate time-scale factor for this model execution.

Moreover, both the lake/reservoir and conceptual base flow

modules are activated.

c. Reach

In the reach-based routing configuration, the 1D vectored

channel network is built from the gridded catchment and

FIG. 1. (a) Locations of AQPI X-band radar and NEXRAD S-band radar in the Bay Area with coverage ranges of 40 km (black) and

100 km (blue), respectively. The red rectangle shows the domain of interest and (b) the study region including two drainage watersheds

with two stream gauges (i.e., SIDs 5112 and 5109) and three rain gauges (i.e., RIDs 1510, 1524, and 2080).

FIG. 2. The hourly mean areal precipitation and its accumulation in February 2019 in the two watersheds from (a),(c) the AQPI data and

(b),(d) the NEXRAD data.
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drainage network. The routing flow moves water from up-

stream to downstream and accumulates at the channel junc-

tions through the linked stream network. In the river flow

simulation, a MC method is implemented for calculating

the hydrograph routings. A conceptual base flow module is

activated. However, the option to activate/inactivate the

lake/reservoir module is not developed in the reach-based

scheme unless the user is running the NWM configuration.

d. NWM

TheNWM is implemented under theWRF-Hydromodeling

system, but some physics options differ from the grid-/reach-

based routing configurations. After the LSM loop, the

disaggregation/aggregation routine is performed as an inde-

pendent operation, which needs a user-defined mapping file

(i.e., ‘‘spatialweights.nc’’). It is used to translate from the

gridded fluxes and states to aggregated catchment fluxes and

states, and then pass into the reach-based routing for river flow

calculation. The spatialweights.nc file contains spatial weights

and identification of all polygons from one input shapefile that

intersects each polygon in another input shapefile. Also, it

supports the calculation of contributed proportion of each grid

on the channel flow fluxes.

In the NWM, the surface overland and subsurface flow

routings are calculated based on a steepest descent method,

and the channel routing is simulated using a MC approach

with a fine spatial resolution. The surface and subsurface flow

routings are the same with the grid-based scheme, and the

channel flow routing is the same with the reach-based scheme.

The lake/reservoir module is activated like the grid-based

routing configuration. Additionally, a conceptual base flow

module is activated like the grid-/reach-based routing config-

urations, but the groundwater basin file and bucket parameters

are utilized based on the user-defined mapping file.

3. An experiment on February 2019 rainstorms in the
Bay Area

a. Study area and dataset

The experiment was performed in the Bay Area during the

atmospheric river (AR)-driven storms that occurred in

February 2019. The Bay Area is the second largest urban re-

gion in California and is one of the fastest growing economies

in the United States. Figure 1a shows the geographic loca-

tions of anAQPIX-band radar and a NEXRADS-band radar

in the Bay Area. The coverage ranges of the AQPI and

NEXRAD radars are 40 and 100 km, respectively. To quan-

tify the value of AQPI radar on streamflow simulation, the

WRF-Hydro domain is setup in Fig. 1b, where two types of

watersheds are investigated. Watershed 1 (W1) is natural with

no lakes/reservoirs and its area is 91.7 km2. Watershed 2 (W2)

is human-affected with some reservoirs and its area is 4.5 times

ofW1. In the domain, the 20-categoryMODIS land cover data,

derived from theWRF preprocessing tool (WPS) version 4.0, is

FIG. 3. The spatial distribution of hourly rainfall in the two watersheds from both AQPI and NEXRAD data for (a),(b) 1000 UTC 2 Feb

and (c),(d) 1000 UTC 14 Feb 2019.
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used in this study. The stream gauges deployed at the outfalls

of W1 andW2 (i.e., SIDs 5112 and 5109, respectively) are used

for evaluating the modeled streamflow. In addition to the near-

real-time (i.e., 2min) AQPI radar QPE with a spatial resolu-

tion of 250m 3 250m as the specific precipitation forcing, the

gauge-corrected hourly NEXRAD rainfall product (hereafter

referred to as NEXRAD) with a spatial resolution of 1 km 3
1 km, which is produced by the operational Multi-Radar Multi-

Sensor system (Zhang et al. 2011), is also incorporated in this

analysis. However, for fair comparison with NEXRAD, analysis

of the AQPI product is performed at hourly scale. Three rain

gauges (i.e., RIDs 1510, 1524, and 2080) are used for cross ex-

amining the two radar rainfall estimates in theAR storm events.

Figure 2 shows the time series of the mean areal precipita-

tion (MAP) in the two watersheds from both the AQPI and

NEXRAD data in February 2019. There are twomajor storms,

including 2–5 February (Case 1) and 13–16 February (Case 2).

With respect to the AQPI data, the accumulatedMAP inW1

(W2) is 78.3 (92.8) mm for Case 1, and 76.5 (105.4) mm for

Case 2, respectively. In terms of the NEXRAD data, the

corresponding accumulated MAP in W1 (W2) are 75.9

(90.4) mm for Case 1, and 84.4 (94.5) mm for Case 2, respec-

tively. The two events are part of a series of storms in 2019 that

produced over $100 million in flood-related damages (Johnson

et al. 2020), and the impacts from the AR storm centered on

14 February 2019 include riverine and alluvial flash flooding,

landslides, and disruptions to transportation, etc. (Hatchett

et al. 2020). In addition, there are twomoderate rainfall events:

one is during 8–10 February 2019 and the other is during 26–

28 February2019. The accumulated MAP from the AQPI data

inW1 (W2) are 28 (50) mm and 17.1 (6.8) mm, respectively, for

the two moderate rainfall cases.

The land surface data in the domain are obtained fromWPS,

which archives a database of land cover type, soil, and vege-

tation initial conditions across the globe. The DEM data used

for creating hydrologic routing files are at 90m 3 90m reso-

lution, which are derived from the Shuttle Radar Topographic

Mission (SRTM). As for the atmospheric forcing data, the

North American Land Data Assimilation System Project

Phase 2 (NLDAS-2) with a 1/88 grid and hourly time step are

used (Xia et al. 2012). As for NLDAS-2 data, the height in-

formation of surface pressure, radiation and precipitation is at

the surface, the height information of air temperature and

specific humidity is at 2m above the surface, and the height

information of wind field is at 10m above the surface.

FIG. 4. Intercomparison of hourly rainfall accumulation for Case

1 with the AQPI, NEXRAD, and ground references (Gauge) data

at the grid location of RIDs (a) 1510, (b) 1524, and (c) 2080,

respectively.

FIG. 5. As in Fig. 4, except for Case 2.
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b. Statistical error metrics

To illustrate the performance of streamflow simulations for

the rainstorm events, three error metrics are used, including

normalized mean absolute error (NMAE), root-mean-square

error (RMSE), and Kling–Gupta efficiency (KGE). Their

formulas are given below:

NMAE5
hjSim2Obsji

hObsi 3 100%, (1)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(Sim2Obs)

2i
q

, (2)

KGE5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(r2 1)2i1 h(a2 1)2i1 h(b2 1)2i

q
, (3)

where Sim andObs are the simulated and observed data for the

event durations, respectively; the angle brackets stand for

sample average; r is the Pearson’s correlation coefficient be-

tween simulation and observation; a is a measure of relative

variability in the simulated and observed data; and b is the bias

of the simulated values, i.e., the ratio between the mean sim-

ulated and mean observed data. The KGE value ranges

from2‘ to 1 with 1 as the best skill score. Given that KGE can

identify possible sources of errors from mean, variance, and

correlation components from the ideal point (Gupta et al.

2009), the KGE index is selected instead of the Nash–Sutcliffe

efficiency for the measure of model performance.

c. AQPI gap-filling radar rainfall analysis

Figure 3 presents the spatial distribution of hourly rainfall

during the two storms at 1000 UTC 2 February 2019 and

1000UTC 14 February 2019, respectively, using both theAQPI

and NEXRAD products. The AQPI data provide more details

of precipitation structure in the two watersheds due to its

higher spatial resolution (250m 3 250m) compared with the

lower resolution of NEXRAD data (1 km3 1 km). Also, some

bias exists between the two products due to various rainfall

retrieval algorithms used by the AQPI and NEXRAD radar

systems. TheAQPI radar rainfall is derived from theR–Kdp (R,

rainfall; Kdp, specific differential propagation phase), whereas

the NEXRAD product is based on Z–R relation (Z, re-

flectivity) and is further adjusted by gauge data (Cifelli et al.

2018; Zhang et al. 2011). To verify the rainfall performances of

AQPI and NEXRAD, the two products are intercompared

with the ground references (Gauge) at three gridcell sites (i.e.,

RIDs 1510, 1524, and 2030) in the Bay Area in the two rain-

storm events of February 2019. Visual inspections of Fig. 4

(Case 1) and Fig. 5 (Case 2) illustrate that the AQPI X-band

radar agrees better with gauge estimates compared to

NEXRAD at all the grid locations and can provide rea-

sonable QPE without gauge-based correction. More details

of the AQPI radar rainfall analysis in the Bay Area can be

found in Cifelli et al. (2018).

d. WRF-Hydro model configuration

The flowchart of WRF-Hydro used in this paper is shown in

Fig. 6, where an offline mode is configured in this application.

The Noah-MP option is applied for vertical land surface pa-

rameterization. The option for dynamic vegetation in the

vegetation model is turned off for simplicity. The Ball–Berry

(BB)model is used to simulate canopy stomatal resistance. The

original surface and subsurface runoff, i.e., free drainage, is set

for runoff and groundwater option. The Monin–Obukhov

(MO) scheme is applied to calculate the surface layer drag

coefficient. The option for supercooled liquid water or ice

fraction is assumed as no iteration. The linear effect and more

permeable option is adopted for frozen soil permeability. The

two-stream scheme that applies to vegetated fraction is se-

lected for the radiation transfer process. As for the ground

snow surface albedo, it is calculated from the Canadian Land

Surface Scheme (CLASS) model. The partitioning of precipita-

tion into rainfall and snowfall is based on the method of

Jordan (1991). The surface resistance to evaporation/sublimation

is retrieved from Sellers et al. (1992). Details of optional

parameterizations can be found in Yang et al. (2011).

FIG. 6. The flowchart of WRF-Hydro modeling system used in this study.
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The Noah-MP LSM module, which is capable of simulating

land–atmosphere interaction processes using multiple options

(Niu et al. 2011), is run with the grid cell at 1 km 3 1 km res-

olution and used the NLDAS-2 as the atmospheric forcing

inputs except for precipitation rate. Both the AQPI and

NEXRAD rainfall products are used as the specific precipi-

tation forcing to compare the difference of streamflow re-

sponses. The NLDAS-2 forcing and optional radar rainfall

inputs are resampled into a 1 km 3 1 km grid resolution using

the WRF-Hydro regridding script.

For each hourly time scale at which the atmospheric

forcing data are available, the column moisture flux within

the Noah-MP is disaggregated from the LSM grid (1 km 3
1 km) to the routing grid at 100 m 3 100m using a subgrid

disaggregation–aggregation transformation method and trans-

ferred to the terrain and channel routing processes. The time

steps for the terrain and channel routing processes are 10 and

100 s, respectively. The aggregation factor 10 is used to ensure the

overland/subsurface flow processes, and the grid disaggregation

approach results in 100 cells in total at 100m3 100m resolution

for each LSM grid.

TheWRF-Hydro initialization file is created by the ‘‘create_

WRFinput.R’’ script from a WPS GEOGRID file and a set of

user-specified conditions. It includes the initial conditions (e.g.,

initial model states of soil moisture, soil temperature, skin

temperature, etc.) for a cold start of the WRF-Hydro system.

The WRF-Hydro is ‘‘cold’’ started from 0100 UTC 1 January

to 0000 UTC 1 February 2019 to ensure the state variables

reach equilibrium in the spinup period. Based on the restart

files at 0000UTC 1 February 2019, themodel is ‘‘warm’’ started

and calibrated on Case 1. During the spinup and calibration

periods, the WRF-Hydro is implemented with NLDAS-2 as

meteorological forcing and the AQPI rainfall product as spe-

cific precipitation under the NWM routing configuration.

Several key parameters related to soil, runoff, groundwater,

and channel modules are selected by the WRF-Hydro

Development Team to regionally calibrate NWM Version

1.1 in the contiguous United States (Dugger et al. 2017;

Lahmers et al. 2019). In this study, these parameters are

selected and calibrated using the dynamically dimensioned

search (DDS) algorithm with 250 iterations (Tolson and

Shoemaker 2007), and corresponding hydrographs of sim-

ulated streamflow at the two outfalls in the calibration pe-

riod of Case 1 are shown in Fig. 7. The calibrated parameters

are utilized based on the optimization of the KGE perfor-

mance metric at the two outfalls, and the red curves in

Figs. 7a and 7b show the optimally simulated streamflow

hydrographs in the calibration process, respectively. Table 1

lists the optimal model parameters used in this study.

Based on the calibrated optimal parameters and restart files

at 0000 UTC 6 February 2019, the model is ‘‘warm’’ started to

ensure an additional spinup of a week and validated on Case 2.

In the validation period, the potential of the AQPI radar for

accurate streamflow simulation through theWRF-Hydro system

is investigated with the three routing configurations noted in

section 2; also, we compare theAQPI-based streamflowwith the

NEXRAD-based result under the NWM-based WRF-Hydro

system. Moreover, both the sensitivity of surficial conditions on

streamflow and the time delay from rainstorm to discharge are

analyzed using the AQPI gap-filling radar as the precipitation

forcing source and the NWM as the routing configuration in the

WRF-Hydro system.

4. Results and discussion

a. Model evaluation of various routing configurations

Figure 8 illustrates the performance of simulated streamflow

at the two outfalls (i.e., SIDs 5112 and 5109) of W1 and W2 in

the validation period of Case 2 with the three routing config-

urations in WRF-Hydro using the AQPI radar QPE as the

precipitation forcing.

During the validation period, there is a widespread rain-

storm in the Bay Area. The highest hourly MAP in W1

(15.6mm) occurs between 1700 and 1800 UTC 14 February

2019. Two peaks are observed in the outfall of W1 on

14 February 2019: the first one, 32.1m3 s21, occurs at 1600UTC

due to continuous light–moderate rainfall in the past 24 h, and

FIG. 7. Changes in streamflow at two outfalls, i.e., SIDs (a) 5112

and (b) 5109, in the two watersheds (i.e., W1 and W2) in the cali-

bration period of 2–5 Feb 2019. In each panel, the gray curves show

the test run with 250 iterations and the red curve indicates the best

run in the calibrated process; the observed streamflow in each

panel is also shown as the blue curve.
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the second one, 35.3m3 s21, occurs at 2200 UTC due to higher-

intensity rainfall over the last several hours (Fig. 8a). The

NWM at SID 5112 produces a single peak flow of 15.9m3 s21

about 3 h after the hourly MAP peak in W1, which underesti-

mates the magnitude and straddles the timing of the two ob-

served peak flows. As for the Grid configuration, the simulated

peak flow occurs at the same time as the second observed peak

but the amount is smaller (27m3 s21 versus 35.3m3 s21). For

the Reach configuration, the simulated peak flow (34.4m3 s21)

is similar in magnitude to both the first and second observed

peaks and occurs between 1800 and 1900 UTC, and about 1 h

later after the hourly MAP in W1. Also, as shown in Table 2,

the Reach scheme has better skills than both Grid and NWM

schemes. Overall, it shows that the WRF-Hydro simulated

streamflow is sensitive to routing configurations, but the re-

sponse time of the simulated peak streamflow is faster, and the

magnitude of themodel simulations is severely underestimated

compared with the observed hydrograph pattern. As shown in

Fig. 5a, there is an underestimation of AQPI radar QPE

compared with gauge observations inW1, which is likely one of

the reasons that leads to the underprediction of peak flow in

the WRF-Hydro simulations.

In W2, the maximum hourly MAP is 11.6mm and occurs at

1100 UTC 14 February 2019. The observed peak flow in SID

5109 (125.4m3 s21) comes 4 h after the maximum hourlyMAP,

which is 1 h earlier in occurrence, but 3 times larger in mag-

nitude, than the first observed peak in SID 5112 of W1. The

NWM simulates a peak streamflow of 74.8m3 s21 at 2200 UTC,

FIG. 8. Simulated and observed hourly streamflow at the two outfalls, i.e., SIDs (a) 5112 and (b) 5109, in the twowatersheds (i.e.,W1 and

W2) in the validation period of 13–16 Feb 2019. The simulated streamflow is separately modeled by the WRF-Hydro system with three

routing configurations includingGrid (yellow), Reach (green), and NWM (blue) using theAQPI product as precipitation forcing input. In

each panel, the observed streamflow is indicated with gray shading, and the hourly mean areal precipitation in each watershed derived

from the AQPI radar is displayed as blue bars.

TABLE 1. The selected optimal model parameters used in the study.

Type Parameter Description Unit Value or range

Soil Bexp Pore size distribution index Dimensionless 3.62–9.83

smcmax Saturation soil moisture content (i.e., porosity) Volumetric fraction 0.41–0.96

dksat Saturated hydraulic conductivity m s21 9.7 3 1027–1.4 3 1025

Channel Bw Parameterized width of the bottom of the stream

network

m 0.53

Mann Manning’s roughness coefficient Dimensionless 0.029

ChSlp Channel side slope m m21 0.018

Runoff REFKDT A tuneable parameter that significantly impacts

surface infiltration and hence the partitioning of

total runoff into surface and subsurface runoff

Unitless 4.95

slope Linear scaling of ‘‘openness’’ of bottom drainage

boundary

Unitless 0.176

RETDEPRTFAC Multiplier on retention depth limit Unitless 0.257

LKSATFAC Multiplier on lateral hydraulic conductivity Unitless 2732

Groundwater Zmax Maximum groundwater bucket depth mm 174.9

Expon Exponent controlling rate of bucket drainage as a

function of depth

Dimensionless 3.85
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several hours later and with a magnitude about 60% compared

to the observed peak. As the rain event continues after the

highest rainfall recorded in W2, both the observed and NWM-

simulated discharges decrease to a stable level of 40–50m3 s21

(Fig. 8b). In contrast to the NWM result, both the Grid and

Reach routing simulations significantly overestimate the peak

flow in W2, with discharge values of 226.4 and 239.4m3 s21,

respectively. Also, the timings of these peak flows lag the ob-

served peak at SID 5109 even more than the NWM simulation

with the Grid and Reach simulations occurring at 0200 UTC

15 February and 2300 UTC 14 February, respectively. Each

hydrograph in the twowatersheds shows a streamflow response

to the rainfall event, but the Grid and Reach require a longer

time to achieve the peak flow than theNWM inW2.As learned

from Fig. 9, it is obvious that the Grid/Reach schemes have

significant biases in terms of NMAE, RMSE, and KGE at the

outfall of W2.

In the natural watershed,W1, with its area less than 100 km2,

the Grid/Reach schemes are more appropriate for modeling

the in/outflow processes, and the NWM is not clearly the su-

perior routing configuration for streamflow simulation in the

rain event. The primary reason might be due to the deficiency

in the disaggregation/aggregation routine configured in the

NWM system in this small watershed with less than 100 grid

cells and no reservoirs. In the human-affectedW2 basin with its

drainage area more than 400 km2, there are substantial over-

estimations of event volumes for both Grid and Reach routing

configurations in the validation period, and the Reach scheme

shows a higher overestimation at the flow peak than that of the

Gridmode. At least for themid-February 2019 storm analyzed,

the Reach scheme fails to perform well for streamflow simu-

lation. The MC algorithm based on flow hydraulics, channel

storage, and lateral inflow contribution is used for the reach-

based river network (Gochis et al. 2018). During the storm

event, an infiltration excess situation occurs but the MC

method does not consider the impact of the backwater effect,

which may increase the channel flow in the river network and

result in higher runoff volume (Fig. 8b). Also, in the Reach

scheme, the option of lake/reservoir process is not activated,

which would incur a larger bias for the simulated streamflow.

The reason of large magnitude of streamflow produced from

the Grid scheme in the hydrograph of SID 5109 is due to ex-

cessive water fluxes and states translating from fine grids to the

aggregated catchment inW2. Overall, the NWM scheme shows

the most satisfying performance for streamflow simulation

among the three routing configurations in W2 and indicates

TABLE 2. Statistical error indices (i.e., NMAE, RMSE, and KGE) of simulated streamflow at the two outfalls (i.e., SIDs 5112 and 5109)

in the two watersheds (i.e., W1 and W2) in the validation period of 13–16 Feb 2019. The simulations are accomplished by three routing

configurations including Grid, Reach, and NWM in theWRF-Hydro system using the AQPI radar product as precipitation forcing input.

Also, the simulated streamflow is performed under the NWM-based WRF-Hydro using the NEXRAD product as precipitation

forcing input.

Stream gauges Mode type NMAE (%) RMSE (m3 s21) KGE

SID 5112, W1 AQPI_Grid 52.9 8.47 0.48

AQPI_Reach 42.6 7.04 0.63

AQPI_NWM 49.2 8.49 0.20

NEXRAD_NWM 46.7 8.50 0.20

SID 5109, W2 AQPI_Grid 124.5 64.57 20.59

AQPI_Reach 117.6 66.38 20.79

AQPI_NWM 32.8 20.65 0.38

NEXRAD_NWM 30.0 20.25 0.29

FIG. 9. Statistical error indices (i.e., NMAE, RMSE, and KGE) of simulated streamflow at the two outfalls (i.e., SIDs 5112 and 5109) in

the two watersheds (i.e., W1 andW2) in the validation period of 13–16 Feb 2019. The simulations are performed by three terrain routing

schemes including Grid (yellow), Reach (green), and NWM (blue) in the WRF-Hydro system using the AQPI product as precipitation

forcing input. Also, the simulation is performed in the NWM-based WRF-Hydro system using the NEXRAD product as precipitation

forcing input, which is shown as red bar in each panel.
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that the consideration of lake/reservoir module is important

for obtaining accurate streamflow simulation in the WRF-

Hydro system for this managed basin. However, the results also

imply that all the schemes are still challenged for producing

accurate streamflow simulations in this heavy rain event, e.g.,

Case 2. More research is necessary on this issue to improve the

WRF-Hydro system in events like the storms analyzed herein. It

is further noted that the WRF-Hydro system is calibrated with

the NWM scheme, which may favor the flow comparisons when

comparing three routing configurations.

b. Model evaluation of various radar rainfall inputs

Figure 10 presents the performances of simulated stream-

flow at two outfalls (i.e., SIDs 5112 and 5109) of W1 andW2 in

the validation period with two different radar rainfall inputs

(i.e., AQPI and NEXRAD) in the NWM-based WRF-Hydro

system. This figure shows that neither simulation using the two

different precipitation inputs is able to reproduce all the details

of the hydrographs in the mid-February 2019 storm event. The

NEXRAD exhibits slightly better NMAE scores for the

streamflow simulations compared with that of AQPI radar

product (Fig. 11c). ForW2, the timing of the peak flow is earlier

in the NEXRAD-forced simulation and more similar with

observations than the AQPI-forced simulation though the

magnitude of the NEXRAD-forced simulation is smaller. This

may be due to less rainfall observed by NEXRAD as shown in

Fig. 5. However, for both watersheds the AQPI rainfall

product has an advantage in simulating the streamflow peak

compared with NEXRAD. Specifically, the performance of

simulated streamflow driven by the AQPI data has higher

KGE (0.38) than that forced by NEXRAD (0.29) in W2 in the

validation period (Table 2). Taken together, these results

demonstrate that the AQPI radar can provide reasonable

streamflow simulations without gauge-based correction in the

AR-driven rainstorm event. It should be noted that AQPI

radar data are used as the rainfall forcing to calibrate the

model, and some AQPI-driven error could be compensated by

the model parameter set. The resultant streamflow simulations

might be more favorable than those forced by the NEXRAD

product.

To some extent, the statistics frombothAQPI andNEXRAD

radarQPE at SID 5109 show the capability of the NWM scheme

in streamflow simulation in the human-affected watershed

(Table 2). However, as seen from the hydrographs driven by

either radar product, both fail to simulate the streamflow peak

verywell in the validation period.Anobvious underestimation is

found for the streamflow simulation in the two basins. This is a

reminder that there is still room for improving the performance

of the NWM-based WRF-Hydro system on flood prediction

during this extreme rainstorm event.

c. Sensitivity analysis on streamflow changes with various

surficial conditions

Streamflow response to extreme rainfall is sensitive to land

surface conditions for most hydrological applications (Yucel

et al. 2015; Sharma et al. 2018; Rummler et al. 2019). To ad-

dress this critical issue, a sensitivity test is performed to

demonstrate the changes in discharge from various surficial

conditions in the NWM-based WRF-Hydro system using the

AQPI radar QPE as the precipitation input in the human-

affected W2 in the mid-February 2019 storm. Both the over-

land and channel parameters are explored as these parameters

are more sensitive in the streamflow simulation compared to

other parameters (e.g., groundwater or LSM) (Yucel et al.

2015; Lahmers et al. 2019). Considering that the infiltration

factor (i.e., REFKDT) and Manning’s roughness coefficient

(i.e., Mann) are two principally sensitive parameters of the

WRF-Hydro system that impact the rainfall–runoff response

characteristics (Yucel et al. 2015; Liu et al. 2021), REFKDT

and Mann are selected in this sensitivity analysis.

Figure 11 shows the performance of simulated streamflow

with REFKDT ranging from 1.0 to 5.0 in 1.0 increments and

FIG. 10. Simulated and observed hourly streamflow at the two outfalls, i.e., SIDs (a) 5112 and (b) 5109, in the two watersheds (i.e., W1

and W2) in the validation period of 13–16 Feb 2019. The simulated streamflow is separately modeled by the NWM-based WRF-Hydro

system using theAQPI (blue) andNEXRAD(red) product as precipitation forcing input. In each panel, the observed streamflow is shown

with gray shading, and the hourly mean areal precipitation in each watershed derived from the AQPI radar is displayed as blue bars.
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Mann ranging from 0.1 to 2.0 with 0.5 increments in the two

watersheds. The observed and simulated streamflow using the

default values of REFKDT and Mann are also shown as black

and blue curves, respectively. All the curves correspond to the

observed flow trends and the occurrences of most peaks are

well simulated at the two outfalls (i.e., SIDs 5112 and 5109) for

both REFKDT and Mann parameters. Additionally, as the

rainfall decreases from 0000 UTC 15 February, both the ob-

served and simulated streamflow become lower for each pa-

rameter. According to the simulated result of REFKDT at the

two outfalls, as REFKDT increases from 1.0 to 5.0, the hy-

drograph volume declines for the simulated peak, but it grad-

ually increases the volume during the recession portions of the

hydrograph. This implies that the simulated hydrograph is very

sensitive to REFKDT in the NWM scheme. Considering that

REFKDT is a tunable parameter that impacts surface infil-

tration and hence the partitioning of total runoff into surface

and subsurface runoff, the lower value of REFKDT would

provide more water flux into the channel flow, especially in the

human-influenced W2. Based on the corresponding curves of

the Mann parameter in Figs. 11e and 11f, the simulated peak

decreases and lags in both watersheds as the surface roughness

index increases from 0.1 to 2.0. Because Manning roughness

coefficient has an impact on the channel environment, a higher

value can hamper the water flow movement and decrease the

peak flow. A longer time is thus necessary to accumulate the

peak flow and corresponding lags are detected for increasing

the Mann parameter in both watersheds. These results shown

herein of the two parameters demonstrate the importance of

surficial conditions on the streamflow response to rain event.

d. Time delay analysis from rainstorms to streamflow
changes

The time response from rainfall occurring in a storm to the

resulting discharge is very complex, which varies with water-

shed size and shape, as well as storm scale and storm velocity

(Cristiano et al. 2017). It is well known that the cross-

correlation function (CCF) is beneficial for exploring the

FIG. 11. Sensitivity analysis to explore the streamflow response based on the NWM-basedWRF-Hydro system at SIDs 5112 and 5109 of

the two watersheds in the mid-February 2019 storm event. (a),(b) The hourly mean areal precipitation and its accumulation in each

watershed are shown; the sensitivity analysis of (c),(d) infiltration factor (i.e., REFKDT) and (e),(f) Manning’s roughness coefficient (i.e.,

Mann) at each outfall are also shown. The observed and simulated streamflow using the default values of REFKDT andMann are shown

as black and blue curves, respectively.
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time delay between the two signals (e.g., rainfall and streamflow).

Figure 12 explores the CCF for hourlyMAP of AQPI radar QPE

inputs compared with both the observed and simulated stream-

flow at SIDs 5112 and 5109 in the mid-February 2019 storm. As

theNWMshows better skill than bothGrid andReach schemes in

WRF-Hydro in the human-affectedW2, the simulated streamflow

used in this section are from the NWM results.

It is found that the most dominant cross correlations occur

between lag hour 28 and 24 for the observed streamflow at

both SIDs 5112 and 5109, and the largest correlations are

positive with values of 0.29 (24 h) for SID 5112 and 0.58 (25 h)

for SID 5109, respectively. This implies that the time margin

from the above-average rainfall to the above-average runoff is

about 4 h at SID 5112 and 5 h at SID 5109. Since the drainage

area of W1 is smaller than that of W2, the lag response at SID

5112 is faster than that of SID 5109. In addition, there is a large

difference in the CCF pattern between rainfall and simulated

streamflow at SID 5109 corresponding to the rainfall and ob-

served streamflow in W2. Specifically, there is around 12 h

delay before the highest correlation value (0.40) is achieved for

the simulated streamflow. The slower response for the ob-

served streamflow at SID 5109 might come from the regulation

of reservoirs in W2.

5. Concluding remarks

A WRF-Hydro experiment is performed in two different

watersheds (natural and human-affected) in AR-driven rain

events of February 2019 to quantify the potential of AQPI gap-

filling radar network for streamflow simulation in the Bay

Area. The primary findings are summarized as follows:

1) The NWM configuration can reproduce observed stream-

flow hydrograph in terms of volume and shape in the

human-influenced watershed (i.e., W2). It also performs

better than both the Grid and Reach configurations, partly

because Grid/Reach fail to translate accurate water fluxes

and states from the fine grids to the aggregated catch-

ment in W2.

2) The AQPI radar rainfall product without gauge correction

provides better simulated streamflow in the larger water-

shed containing reservoirs compared with the NEXRAD-

forced simulation. This is also consistent with better

performance of the AQPI gap-filling radar on the rainfall

estimates compared with NEXRAD.

3) Increasing channel roughness coefficient, i.e., Mann, de-

creases the simulated peak flow and further lags the asso-

ciated peak timing. In addition, the discharge increases to a

higher level as the infiltration factor, i.e., REFKDT, de-

creases in the survey watershed.

4) There is a longer lag response for the observed streamflow

inW2 (managed) compared toW1 (natural), which suggests

that reservoirs play an important role for regulating the flow

time response in the human-affected watershed.

5) Based on the simulation and sensitivity analysis, the large

variability of the simulated river flows from three configu-

rations using the same AQPI radar QPE forcing compared

with the relatively small differences of simulated flows from

the two radar products (AQPI and NEXRAD) suggests

that the routing configuration plays a more important role

than the rainfall forcing itself in affecting the hydrologic

response and functional behavior of the simulations.

This study indicates that the AQPI gap-filling X-band radar

network has great potential for supporting streamflow simu-

lations in the Bay Area. This results further illustrate the link

between heavy rainfall and streamflow response through the

WRF-Hydro system. However, it is still challenging to

FIG. 12. The cross-correlation function plots for hourly mean areal precipitation compared with both the ob-

served (blue) and simulated (red) streamflow at both SIDs 5112 and 5109 during the mid-February 2019 storm,

where the rainfall data are obtained from AQPI radar, and the NWM-based WRF-Hydro system is used for

streamflow simulation.
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accurately simulate the streamflow hydrographs including

volume and peak for these extreme rainfall events. There is

currently no representation of overbank flow processes and the

interaction with the hydrogrids, and the flow into the channel is

one-way in the WRF-Hydro modeling system (Gochis et al.

2018). It fails to explicitly model the inundation area from

overbank flow from the channel back to the terrain in these

heavy rainfall events. The next step will focus on the issue of

overbank flow mode designation so as to improve the perfor-

mance of the WRF-Hydro application in the Bay Area

rainfall events.
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